Modelling Sound Conflict Management for Virtual-Enterprise Collaboration

Alex Norta, PhD., Department of Informatics, TTÜ@IEEE SCC'14, Anchorage, Alaska, USA
Agenda

- Introduction
 - Virtual Enterprise (VE) status quo
 - Gap and research questions
 - Method

- Context of VE
 - Running example
 - Conflict Scenario

- VE-architecture
 - Architecture Overview
 - Business Rule Modelling

- Conflict-management approach
 - Exception Detection & Classification
 - Conflict Classification & Resolution

- Evaluation
 - VE-Collaboration Specification
 - Conflict-Resolution Protocol

- Conclusion and future work
Introduction

- New enabling concepts and technologies
 - service-oriented cloud computing (SOCC)
 - Business Process as a Service (BPaaS)
 - Cross-organizational eSourcing framework
Introduction

- **Gap:** Conflict management requires
 - a governance structure
 - to ensure soundness of the collaboration,
 - even when reconciliation triggers changes in service interfaces

- **Research question:** How to develop a VE service ecosystem with conflict management- and resolution mechanisms?
 - What are the key features of a VE service ecosystem?
 - What are the specifics of business rules that guarantee soundness of the VE?
 - What conflict types exist in a VE and what are the appropriate conflict resolution approaches?
Context of VE-collaboration

- Running example:

Context of VE-collaboration

Goal model: left/top → right/bottom
Context of VE-collaboration

- VE-architecture
Context of VE-collaboration

- Monitoring package.
Context of VE-collaboration

- Semantics of some [Declare](https://www.declare.org/) templates

<table>
<thead>
<tr>
<th>Constraint</th>
<th>LTL semantics</th>
<th>Constraint</th>
<th>LTL semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>responded existence</td>
<td>◊A → ◊B</td>
<td>co-existence</td>
<td>◊A ↔ ◊B</td>
</tr>
<tr>
<td>response</td>
<td>□(A → ◊B)</td>
<td>precedence</td>
<td>¬B ⋀ A</td>
</tr>
<tr>
<td>alternate response</td>
<td>□(A → ◌(¬A ∨ B))</td>
<td>alternate precedence</td>
<td>(¬B ⋀ A) ∧ □(B → ◌(¬B ⋀ A))</td>
</tr>
<tr>
<td>chain response</td>
<td>□(A → ◌B)</td>
<td>chain precedence</td>
<td>□(◎B → A)</td>
</tr>
<tr>
<td>not co-existence</td>
<td>◊A → ¬◊B</td>
<td>not succession</td>
<td>□(A → ¬◊B)</td>
</tr>
</tbody>
</table>

Declarative workflows:
Balancing between flexibility and support

W. M. P. van der Aalst, M. Pesic, H. Schonenberg
Context of VE-collaboration

- **Business rules for**: \(\forall x. \Box((A \land \Phi(x)) \rightarrow \Diamond \exists y. (B \land \Psi(x, y))) \)
- **Rule R1**:
 - “If order amount for any shipment is greater than $1 million, choose the lowest cost shipper; else choose Ship”
- **Rule R2**:
 - “Choose Ship for all shipments”
- **Rule R3**:
 - “If order amount is between $100,000 and $250,000, choose Ship; else choose the lowest cost shipper”

Ship cases

- for R1: \(\Box((\text{ReceiveOrder} \land (\text{amount} > \$1 \text{ million})) \rightarrow \Diamond \text{ChooseShip}) \),
- for R2: \(\Box(\text{ReceiveOrder} \rightarrow \Diamond \text{ChooseShip}) \),
- for R3: \(\Box((\text{ReceiveOrder} \land (\text{amount} \geq \$100,000) \land (\text{amount} \leq \$250,000)) \rightarrow \Diamond \text{ChooseShip}) \).

Low-cost shipper

- for R1: \(\Box((\text{ReceiveOrder} \land (\text{amount} \leq \$1 \text{ million})) \rightarrow \Diamond \text{ChooseLowestCostShipper}) \),
- for R3: \(\Box((\text{ReceiveOrder} \land (\text{amount} < \$100,000) \lor (\text{amount} > \$250,000)) \rightarrow \Diamond \text{ChooseLowestCostShipper}) \).

- \(\Diamond \text{ChooseLowestCostShipper} \rightarrow \neg \Diamond \text{ChooseShip} \)
Context of VE-collaboration

R1 R2 R3

100t

250t

1 mill

ship

low cost
Conflict Management Approach

- Conflict management lifecycle

![Conflict Management Lifecycle Diagram]
Conflict Management Approach

Conflict types

<table>
<thead>
<tr>
<th>Local</th>
<th>Service</th>
<th>Party</th>
<th>Global</th>
</tr>
</thead>
<tbody>
<tr>
<td>disruptive</td>
<td></td>
<td></td>
<td>eCommunity</td>
</tr>
<tr>
<td>rule</td>
<td>service</td>
<td>party</td>
<td></td>
</tr>
<tr>
<td>non-disruptive</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>effect</td>
<td>epoch change</td>
<td></td>
<td>termination</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ignore</td>
</tr>
</tbody>
</table>
Conflict Management Approach

- Epoch-change types: 10.1109/EDOC.2012.14
Evaluation

- Exemplary mapping of rule R3 to StandardML-statement

![Diagram]

http://cpntools.org/

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>Process Instantiation ID</td>
</tr>
<tr>
<td>b</td>
<td>bill of SupTr</td>
</tr>
<tr>
<td>c</td>
<td>cost</td>
</tr>
<tr>
<td>ts</td>
<td>tyre specification with price</td>
</tr>
<tr>
<td>ws</td>
<td>steering wheel specification with price</td>
</tr>
<tr>
<td>trc</td>
<td>tyre prices and b aggregated</td>
</tr>
<tr>
<td>ag</td>
<td>aggregated prices of steering wheels, tyres, bills</td>
</tr>
<tr>
<td>sb</td>
<td>bill of wheel supplier</td>
</tr>
<tr>
<td>s</td>
<td>shipping specifications</td>
</tr>
<tr>
<td>a</td>
<td>delivery address</td>
</tr>
<tr>
<td>shcm{1</td>
<td>2}</td>
</tr>
<tr>
<td>shtr{1}</td>
<td>shipper choice of tyres manufacturer</td>
</tr>
<tr>
<td>shst{1}</td>
<td>shipper choice of steering wheels manufacturer</td>
</tr>
<tr>
<td>wse</td>
<td>extra specification details</td>
</tr>
</tbody>
</table>
Evaluation

- Conflict-management by agents of collaborating parties
Conclusion

- How to develop a VE service ecosystem with conflict management- and resolution mechanisms

Sub-questions

- Key features of a VE service ecosystem?
 - External-level process-view matching
 - Conceptual-level larger imperative processes
 - Orchestration of legacy systems
 - System replication for each party

- Business rules specifics?
 - Declare statements with Linear Temporal Logics
 - Event-Condition-Action rules for conflict detection, e.g., LTL rules conflicts
 - Exception classifications

- Conflict types and conflict resolutions?
 - Disruptive when conflict so severe that collaboration collapses
 - Non-disruptive when conflict can be reconciled

Future work

- Prototype and evaluating our approach
- Integrate negotiation-based automated conflict resolution strategies
Thank you for listening!

Q&A

Study IT in .ee

sponsored by Skype™